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Compact phases of polymers with hydrogen bonding
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We propose an off-lattice model for a self-avoiding homopolymer chain with two different competing
attractive interactions, mimicking the hydrophobic effect and the hydrogen-bond formation, respectively. By
means of Monte Carlo simulations, we are able to trace out the complete phase diagram for different values of
the relative strengths of the two competing interactions. For strong enough hydrogen bonding, the ground state
is a helical conformation, whereas with decreasing hydrogen-bonding strength, helices get eventually destabi-
lized at low temperature in favor of more compact conformations resemplisigeets appearing in the native
structures of proteins. For weaker hydrogen bonding helices are not thermodynamically relevant anymore.
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The collapse of a self-avoiding flexible polymer chain in a=1, for 2<i<N, while no other constraint is considered. We
“bad” solvent has been studied for many yeéts. Follow-  model the hydrophobic effe¢®] by considering a pairwise
ing de Gennes’s seminal work on showing the intimate conattractive square well potential with a hard wakk,

nection of polymer collapse with tricritical systefr®y, most zzogi,l<jsthp(|Fi — FJ-|), with

of the theoretical effort has been concerned with the univer-

sal features of th@ point, the thermodynamic second-order w  for r<o,

transition between the swollen and the compact plase V()= —1 for o<r=\, (1)

this last phase being usually regarded as a structureless liquid
globule phasé¢l]. The possibility of more complex behavior

in the.compact .phase has been investigated only recently,here o is the hard-core radius of each bead anik the

revealing the existence, at lower temperatures than the Cojange of the attractive interaction. In the following we wil

lapse gas-to-liquid transition, of a liquid-to-solid and a solid- g\ways consider the cage=1, A\=1.5, as in Ref[4].

to-solid transition(4]. In order to model hydrogen bonding, we need to break
On the other hand, protein molecules undergo similaisotropy and favor a preferred direction between the two

transitions between denatured, molten globule, and nativRydrogen-bonded beads. We use the same type of directed

states, which are solidlike structures with a well definedinteraction proposed by Kemp and CHéi®], so that the two

three-dimensional conformatid®]. The main driving force planes, each containing one of the two hydrogen-bonded

of protein collapse is believed to be the hydrophobic effectbeads and its nearest neighbors along the chain, will both be

which shields most of the nonpolar side chains in the core opreferably orthogonal to the contact vector between them

the native protein structure from waf@]. This could indeed  [11]:  Epp=S,i-j+1=nVio(ri—T;,0;,0;),  where U

be grossly described as a “bad” solvent effect. Yet, native:(;_ —r)X(f;—r_,), and

structures of proteins are very peculiar when compared to = ' * Lo

typical compact conformations of self-avoiding polymer rdn N SN Moty m 7|

chpains. The FE)enchmark of protein nativeness is peprhaps the  Vnolhu U= 05| u |+ [r MV, (2)

ubiquitous presence of highly ordered local moifs, Ca"edwheref denotes normalized vectors. The directionality de-

Eiﬁ%?:&% structures, known to be stabilized by hydrogegree of hydrogen bonding is controlled by the expormana
In this péper we propose a minimal off-lattice homopoly- large value corresponds to a strong “directionality.” We have

e mode, were'a sual vio-hody soropic atrseiv T SUASS 12 cee stee ver s icd
interaction—mimicking the hydrophobic effect—is compet- zation P y P
ing with a directed attractive interaction mimicking the an- :

; . The interplay between hydrophobic collapse and hydro-
gular dependence of hydrogen bondi. We consider a gen bonding is controlled by the relative strengttbetween

chain of N beads at positions; in the three-dimensional e g interactions when the following total Hamiltonian is
continuum spac&”, with 1<i<N. The chain constraint is ynsidered:

enforced strictly, by keeping the distance between consecu-
tive beads along the chain constant and unitbﬁ’iy,— Fi_1| Ho=Enpt aEpp. (©)]

0 for r=\,
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Whenever two beads come into contact, i.e., their mutuaDur simulation method can be easily adapted in order to
distance falls within the well, they always gain a negativecompute the density of stategEy,,Enp) as a function of
unitary energy contribution frony,,. A further negative both energy terms. Details on the employed reweighting
contribution could come fronk,,, depending on how well scheme will be published elsewhej20]. In this way, not
the hydrogen bond is formed between them, ranging from oonly convergence to equilibrium is more easily obtained, but
in the worst case, to-«, in the best one. Thus, from the the partition functionZy(T,a)=2g g »(Enp,Enp)exd
microscopic point of view the two energy terms are coopera—(En,+aEp,)/T], and hence any other relevant thermody-
tive. If hydrogen bonding is switched of,=0, we are back namic quantity, can now be reconstructed for any given value
to the usual case of isotropic pairwise attraction consideredf the relative strengtlr between the two competing energy
in Ref. [4], which yields a compact ground state with no terms. The effectiveness of this sampling strategy shows that
secondary structures. In the other limit of no hydrophobicthe two energy terms serve as relevant order parameters.
interaction,a« ==, the ground state has already been shown The main result of this work, obtained for a chain with
to be a long straight helix, when=6 [10]. Since the ground N=17 beads, is shown in Fig. 1. The logarithmic density of
state differs significantly in the two limiting cases, one statesS(Eyp,Enp) =In[p(Enp.Enp)], the microcanonical en-
should actually expect a nontrivial competition between theropy, is represented as a surface plot in the employed two-
two energy terms for intermediate values @f despite the dimensional representation of the conformational space. Ef-
microscopic cooperativity. This competition is induced at afective free energy landscapes can easily be reconstructed
global macroscopic level as a consequence of chain connew4thin the same representation:
tivity and excluded volume constrairts2]. In this paper, we
will focus on its thermodynamic implications. Fo(T,Enp,Enp) =(Enpt+ aEnp)/ T=S(Epp,Enp),  (4)

Our results qualitatively agree with previous work on an
analogous lattice model, where hydrogen bonding was mimyhere the free enerdy,(T,Ep,,Enp) is given in dimension-
icked via the introduction of rotating spifi$3]. We remark, |ess units. The surface plot in Fig. 1 can thus be interpreted
nonetheless, that the extension of such results to our offas the opposite of the free energy landscape at infinite tem-
lattice model is highly nontrivial, since the geometrical orderperature, so that free energy valleys are seen as entropic
implicit in the lattice structure could mask or enhance secyigges. In the phase-space region with the lowest values of
ondary structure formation artificially. As an example, while poth energy terms, the entropy surface exhibits a rich yet
isotropic compaction of a homopolymer chain on a cubicregular structure, which is going to play a crucial role in
lattice is sufficient to produce some amount of secondaryjetermining the thermodynamic properties at low tempera-
structure{14], this is not true for an off-lattice homopolymer tyre Three different ridges, separated by nonconvex regions

[15.16. _ . of the entropy surface corresponding to free energy barriers,
Our aim is to determine, by means of Monte Carlo simu-can pe identified.
lations, the density of statggE) of a polymer chain with The properties of the conformation ensembles populating

the Hamiltonian(3), so that the partition functio@y(T) of  sych entropic ridges, or free energy valleys, can be readily
anN-bead chain at reduced temperatdrean be easily re- jdentified by computing several order parameters, which
constructedZy(T) = Zgp(E)exp(~E/T). We have employed measure the compactness degree and the amount of second-
a set of standard moves Currently used in simulations of thgry structure content. Compactness is usua”y measured by

polymer chain; pivot, crankshaft, and reptation mol£8.  means of the squared gyration radius
In order to avoid trapping in local energy minima, we have

employed a simulation method based on generalized en- N

semble techniquegl8]. The key notion, using generalized RSIE (fi—Tem?/N, (5)
ensembles, is that a proper reweighting of temperature as a i=1

function of energy should allow the chain to escape from

such energy minimfl19]. The method lends itself in a natu- wherer,,==N ,r;/N is the center-of-mass vector. As for

ral way to be formulated within an iterative convergencesecondary structures, we define the helical content of a con-
scheme, and the possibility of properly employing the statiSformation as

tical information from more different steps of such a scheme

greatly increases its effectivendds]. 5
Nevertheless, the presence of frustration provides an in- Sh= E [(Vigj-1+Vij+Vii1j11)/3]™, (6)
herent limitation to such a method, since it is based on the j-i=3 ' ’ ’

knowledge of local properties of the phase space, and the

competition between different energy terms results in differand the parallel and antiparallel sheet content similarly:
ent regions of the phase space sharing the same total energy

but having different local densities of states. This turns out to "

be the case within our model, causing a very slow conver- Eps:.;‘;e [(Viegj—1+VijtViej 0BT, (7)
gence to equilibrium. Therefore, we have introduced a finer, e

two-dimensional representation of the full multidimensional

phase space, by identifying a conformation through both its — o RV m
hydrophobic energyEy,, and hydrogen-bond energ,. Zas HE>5 [VicajeatVig#Viea-0BI% - (®)
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FIG. 1. (Color) Entropy surface ploS(Ey,,Epp) in the (Ep,Enp) plane. Secondary structure content order parameters are shown in
color scale: red for helice&.,), green for sheet& o)+ (2 ,5). The lighter the color the higher the order parameter. The yellow lines on

the entropy surface show the average hydrophobic and hydrogen bond energies parametrized as a function of tempera@yie3idr

The dashed portions of the curves refer to a first-order transition, which is identified by looking at the free energy contour plot, as in Fig. 3,
and simply connecting the two competing free energy minima. Typical conformations populating relevant entropic ridges are also shown.

where V; jzvhb(Fi_Fj Ui ,Jj) (0=<V;;<1) measures to ary structure. Within our definitions a simple hydrophobic

what extent a hydrogen bond is formed between béadsl ~ contact, which is not a good hydrogen bond, does not con-
j. Each term in the above surfi&gs.(6), (7), and(8)], again  tribute to secondary structure counting.

between 0 and 1, measures to what extent thi§ pair can As is shown in Fig. 1, the ridges in the entropy surface are
be considered the center of a local portion of a given secondassociated, with increasing number of hydrophobic contacts
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FIG. 2. (Color) Specific heat per monoméZ, black line; and mean square gyration rad{ﬁ%), blue line, as a function of reduced
temperaturd in logarithmic scale, in thee=3 case. In the inset, the specific heat per monomer, black line, is again shown together with the
secondary structure order parametgls), red line, and ¢ + (2 ,5), green line. Dotted lines show the same quantities as computed from
a second independent simulation.

and decreasing number of hydrogen bonds, to helices withlose to the shoulder corresponds to a sharp increase of the
four beads per turn, to helices with five beads per turn, and tgyration radius, and is related to the formation of many hy-
sheetlike conformations, respectively. The gyration radiugirogen bonds and to the appearance of helical structure,
decreases accordingl20], since long straight helices are whereas the hydrophobic energy is almost not changed. The
extended objects. Whereas heli¢asand(b) are indeed rep- free energy contour plot clearly shows the existence of two
resentative of the two helical ridges, the sheetlike conforma-

tion (c) is just one among many possible different represen- F(TE
o )

tatives. In this region we expect the occurrence of many  _g hP’hb>’ o‘_3 O 12
different free energy minima, possibly giving rise to glassy ¥ ’
behavior. Such frustration is of course not resolved within -85
our bivariate parametrization.

We now discuss in detail the case=3. The mean square -9.0F

gyration radius(Ré) and the specific heat per monome@r [
=T 2((H%)—(H ,)?)/N are shown in Fig. 2. The behavior £ -9.5F
of the secondary structure order parametgf®;) and .
(2p9+(2ag, is shown in the inset. The curves resulting ~ —10.0¢
from two different independent simulations are shown; the .
accuracy is quite good down to temperatures as low as 0.1 —10.5¢©
The specific heat curve exhibits, with decreasing tempera- b
ture, one shoulder and two higher and sharper peaks. Specifi
heat peaks are usually related to a phase transition, but cat
should of course be taken in generalizing results from such & e
small systentsee, e.g., Ref21] for a detailed discussion of 15 3 contour plots at different temperatures, in e 3
problems arising in finite-size scaling of tifecollapse. For  case of the effective free ener@y,(T,Enp.Enp). Eq. (4), in the
a finite-size analysis of such transitions, we show the fre_?Ehp,Ehb) plane. The temperatureék=0.46, T=0.14 correspond
energy contour plots at the corresponding temperatures i the specific heat peaks seen in Fig. 2. The spacing between con-
Fig. 3. secutive levels in each contour plot is unitary, and corresponds to a
As signalled by the decrease of the gyration radius, thelifference ofkgT in physical units. The darker the color, the higher
specific heat shoulder is related to the collapse of the chaithe free energy value. Letters refer to entropic ridges and confor-
from the swollen high temperature phase. The first peaknations in Fig. 1.

T R ‘
58 -56 -54 52 -50 —48 —46
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competing minima, so this globule-to-helix transition is first moreover, takes place in all cases for similar values of the
order. The second peak is marked by a sharp decrease in thempeting energies. At lower temperatures, the hydrogen-
gyration radius, and is related to the breaking of helices antfond strength greatly affects the thermodynamic behavior.
to the formation of sheetlike structures, such as conformatiodVhen =0, the conformational ensemble populated at low
(c) in Fig. 1. Sheetlike conformations are compact objectstemperature does not include, as expected, the regions of the
having less hydrogen bonds but more hydrophobic contactghase space with a high content of secondary structure. As in
than helices. This last transition is again first order, as showfRef. [4], two further transitions are present, liquid-to-solid

in the free energy contour ploThreedifferent minima are a'n.d solld—to—sollq. Ifa=_1, after the last solid-to-solid tran- .
present, originating from the entropic ridges identified in Fig.Sition the sheetlike region of the phase space becomes effi-
1, but helices with five beads per tuth) never get effi- ciently sampled at low temperatures. d&=3, as we have

; ; i~ < already seen, the chain first undergoes a transition from the
g:ggtly populated, since they suffer competition from eItherliquid globule phase to the helical region and then to the

The very structure of the specific heat, one shoulder anah_eetllke region. Both transitions are first order. Finally, |f.
a=4, hydrogen bonds are strong enough to produce a heli-

then two peaks with decreasing temperature, is similar t%al ground state, as in the=o case[10]

what_ is found in the usuak=0 case, even if the ther_mody- Note that only the marginal border of the green sheetlike
namically stable phases are completely different. It is tempt-regiOn is thermodynamically relevant at low temperatures
ing to interpret our results within the same overall frame-(gee also the small increase of the order parameter in Fig. 2
work proposed in Ref[4], that is to say, with decreasing ¢ s pelieved that helices are more likely to be formed by
temperature the chain first undergoes a gas-to-liquid Colegigues with small side chain groups, whereas the loss in
lapse, then a first-order liquid-to-solid transition, and finally ;onformational entropy suffered by bigger side chain groups,
a solid-to-solid transition, which is again first ordén the  \yhen arranged in helical conformation, favors the formation
absence of hydrogen bonding, the last transition is a continys¢ B sheetd22]. This general picture is consistent with our
ous polymorphic transitiopd]). In our model, the possibility eqits. In fact, no side groups are present and helices are
of hydrogen bonding simply helps in selecting helices anqngeeq entropically favored, since they sit on the top of a
sheets among all possible solid crystalline conformations. yiqqe in the entropy surface, whereas sheetlike conformations
In Fig. 1 we have also summarized the different thermo-yq "ot
dynamic static properties of the polymer chain whenis To summarize, we have introduced a simple model for an
varied. The yellow lines can be thought of as dynamicalyf |atice self-avoiding polymer chain with two competing
trajectories only in thenfinitely slow cooling case. Actual = ayractive interactions, isotropic and directionalized. By
dynamics doesottake place within the effective free energy means of Monte Carlo simulations we have determined the
landscapg4), since kinetic barriers in the full phase space yengity of states of the chain within a two-dimensional rep-
are smoothed over by the coarse graining of our represent@ssentation of the phase space, and hence the phase diagram
ti_o_n. This is most likely the case for_the helix-to-sheet tran-, gifferent values of the relative strength of the two com-
sition, where we expect the underlying energy landscape t8eting energies. If the directionalized interaction is strong
be more rough. enough, different conformational ensembles compete closely

_ Al trajectories in Fig. 1 start from a common point at yith each other at low temperature, which have peculiar pro-
infinite temperature, but then explore different regions of thgginjike features. such as helices and sheets.

phase space, according to different strengths of hydrogen
bonding. Nevertheless a collapse transition, related to the It is a pleasure to acknowledge enlightening discussions
shoulder in the specific heat, is common toaNalues, and, with A. Maritan, C. Rischel, K. Sneppen, and G. Tiana.

[1] I.M. Lifshitz, A.Yu. Grosberg, and A.R. Khokhlov, Rev. Mod. [9] A proper tracing out of the solvent molecules’ degrees of free-

Phys.50, 683(1978. dom would indeed yield a temperature dependent pairwise po-
[2] P. G. de GennesScaling Concepts in Polymer PhysitSor- tential. We neglect such temperature dependence for the sake
nell University Press, Ithaca, NY, 1979 of simplicity, as is usually done in similar studigs).

[3] C. Vanderzandd, attice Models of Polymer&ambridge Uni- [10] J.P. Kemp and Z.Y. Chen, Phys. Rev. L&1, 3880(1998.

[4] \\/(erzsrl]té/uPrgs;, S::{ng:ggl\jv IiZ?SIus Phvs. Rev. LT 2822 [11] Note that the isotropy breaking involved in hydrogen-bond for-
(i99® T ' ' plus, Fhys. ’ ' mation introduces effective multibody correlations.
: A[12] See V.G. Rostiashvili, G. Migliorini, and T.A. Vilgis, Phys.

[5] A. R. Fersht,Structure and Mechanism in Protein Science: _ ) )
Guide to Enzyme Catalysis and Protein Foldifisreeman, Rev. E64, 051112(2001)) for a discussion of how disorder and

New York, 1998. frustration are effectively self-generated in a polymer compact
[6] K.A. Dill, Biochemistry 29, 7133(1990. globule, being related to virial coefficients of different signs.
[7] L. Pauling, R.B. Corey, and H.R. Branson, Proc. Natl. Acad.[13] J. Borg, M.H. Jensen, K. Sneppen, and G. Tiana, Phys. Rev.
Sci. U.S.A.37, 205(195)). Lett. 86, 1031(2001).
[8] T. E. CreightonProteins: Structures and Molecular Properties [14] H.S. Chan and K.A. Dill, Proc. Natl. Acad. Sci. U.S.87,
(Freeman, New York, 1993 6388(1990.

021805-5



TROVATO, FERKINGHOFF-BORG, AND JENSEN PHYSICAL REVIEW &7, 021805 (2003

[15] L.M. Gregoret and F.E. Cohen, J. Mol. Bi@19, 109(1991J). (1997.
[16] N.D. Socci, W.S. Bialek, and J.N. Onuchic, Phys. Re¥%&  [20] A. Trovato and J. Borgunpublishegl

3440(1994. [21] P. Grassberger and R. Hegger, J. Chem. PhAy® 6881
[17] A.D. Sokal, Nucl. Phys. B, Proc. Suppl?7, 172(1996. (1995.
[18] J. Ferkinghoff-Borg, Eur. Phys. J. B9, 481(2002. [22] T.P. Creamer and G.D. Rose, Proc. Natl. Acad. Sci. U.84A.
[19] U.H.E. Hansmann and Y. Okamoto, J. Comput. Ch&& 920 5937(1992.

021805-6



